3 research outputs found

    Matrix Multiplicative Weights Updates in Quantum Zero-Sum Games: Conservation Laws & Recurrence

    Full text link
    Recent advances in quantum computing and in particular, the introduction of quantum GANs, have led to increased interest in quantum zero-sum game theory, extending the scope of learning algorithms for classical games into the quantum realm. In this paper, we focus on learning in quantum zero-sum games under Matrix Multiplicative Weights Update (a generalization of the multiplicative weights update method) and its continuous analogue, Quantum Replicator Dynamics. When each player selects their state according to quantum replicator dynamics, we show that the system exhibits conservation laws in a quantum-information theoretic sense. Moreover, we show that the system exhibits Poincare recurrence, meaning that almost all orbits return arbitrarily close to their initial conditions infinitely often. Our analysis generalizes previous results in the case of classical games.Comment: NeurIPS 202

    No-Regret Learning and Equilibrium Computation in Quantum Games

    Full text link
    As quantum processors advance, the emergence of large-scale decentralized systems involving interacting quantum-enabled agents is on the horizon. Recent research efforts have explored quantum versions of Nash and correlated equilibria as solution concepts of strategic quantum interactions, but these approaches did not directly connect to decentralized adaptive setups where agents possess limited information. This paper delves into the dynamics of quantum-enabled agents within decentralized systems that employ no-regret algorithms to update their behaviors over time. Specifically, we investigate two-player quantum zero-sum games and polymatrix quantum zero-sum games, showing that no-regret algorithms converge to separable quantum Nash equilibria in time-average. In the case of general multi-player quantum games, our work leads to a novel solution concept, (separable) quantum coarse correlated equilibria (QCCE), as the convergent outcome of the time-averaged behavior no-regret algorithms, offering a natural solution concept for decentralized quantum systems. Finally, we show that computing QCCEs can be formulated as a semidefinite program and establish the existence of entangled (i.e., non-separable) QCCEs, which cannot be approached via the current paradigm of no-regret learning

    Evolutionary Game Theory Squared: Evolving Agents in Endogenously Evolving Zero-Sum Games

    Full text link
    The predominant paradigm in evolutionary game theory and more generally online learning in games is based on a clear distinction between a population of dynamic agents that interact given a fixed, static game. In this paper, we move away from the artificial divide between dynamic agents and static games, to introduce and analyze a large class of competitive settings where both the agents and the games they play evolve strategically over time. We focus on arguably the most archetypal game-theoretic setting -- zero-sum games (as well as network generalizations) -- and the most studied evolutionary learning dynamic -- replicator, the continuous-time analogue of multiplicative weights. Populations of agents compete against each other in a zero-sum competition that itself evolves adversarially to the current population mixture. Remarkably, despite the chaotic coevolution of agents and games, we prove that the system exhibits a number of regularities. First, the system has conservation laws of an information-theoretic flavor that couple the behavior of all agents and games. Secondly, the system is Poincar\'{e} recurrent, with effectively all possible initializations of agents and games lying on recurrent orbits that come arbitrarily close to their initial conditions infinitely often. Thirdly, the time-average agent behavior and utility converge to the Nash equilibrium values of the time-average game. Finally, we provide a polynomial time algorithm to efficiently predict this time-average behavior for any such coevolving network game.Comment: To appear in AAAI 202
    corecore